Modelling landslide generated waves using the discontinuous finite element method

نویسندگان

چکیده

A new two-layer model for impulsive wave generation by deformable granular landslides is developed based upon a discontinuous Galerkin finite element discretisation. Landslide motion modelled using depth-averaged formulation shallow subaerial debris flow, which considers the bed curvature represented local slope angle variable and accounts inter-granular stresses Coulomb friction. Wave propagation are simulated with three-dimensional non-hydrostatic coastal ocean Thetis to accurately capture key features such as dispersion. Two different techniques used in treating wetting drying (WD) processes during landslide displacement generation, respectively. For lower-layer across dry classical thin-layer explicit WD method implemented, while resulting free-surface waves interacted moving an implicit scheme utilised naturally circumvent artificial pressure gradient problem may appear dynamic interaction between water if method. The validated suite of test cases, good agreement demonstrating its capability describing both complex behaviours from initiation deposition, consequent propagation.

منابع مشابه

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Asynchronous Parallel Discontinuous Finite Element Method

We describe a new iterative, asynchronous, parallel algorithm for the solution of partial diierential equations, based on discontin-uous nite-element methods. We use the domain-decomposition methods to decompose a large problem into a number of smaller problems that can be computed in parallel. These methods facilitate coarse-grain paral-lelism, which is important for exploiting parallelism eec...

متن کامل

Discontinuous Galerkin Finite Element Method for the Wave Equation

The symmetric interior penalty discontinuous Galerkin finite element method is presented for the numerical discretization of the second-order wave equation. The resulting stiffness matrix is symmetric positive definite and the mass matrix is essentially diagonal; hence, the method is inherently parallel and leads to fully explicit time integration when coupled with an explicit timestepping sche...

متن کامل

Implementation of the Continuous-Discontinuous Galerkin Finite Element Method

For the stationary advection-diffusion problem the standard continuous Galerkin method is unstable without some additional control on the mesh or method. The interior penalty discontinuous Galerkin method is stable but at the expense of an increased number of degrees of freedom. The hybrid method proposed in [5] combines the computational complexity of the continuous method with the stability o...

متن کامل

The local discontinuous Galerkin finite element method for Burger's equation

In this paper, we study the local discontinuous Galerkin (LDG) finite element method for solving a nonlinear Burger’s equation with Dirichlet boundary conditions. Based on the Hopf–Cole transformation, we transform the original problem into a linear heat equation with Neumann boundary conditions. The heat equation is then solved by the LDG finite element method with special chosen numerical flu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Numerical Methods in Fluids

سال: 2022

ISSN: ['1097-0363', '0271-2091']

DOI: https://doi.org/10.1002/fld.5090